

UGANDA BUSINESS AND TECHNICAL EXAMINATIONS BOARD

Business and Humanities Certificate Examinations

APRIL-MAY 2022 SERIES

PROGRAMME

NCICT, NCCM, NCBM, CCE

PAPER NAME

BASIC MATHEMATICS

PAPER CODE

NCIT113/NCBM113/CBM1101

YEAR I, SEMESTER I

21/2 HOURS

MONDAY, 25TH APRIL, 2022

INSTRUCTIONS TO CANDIDATES

- 1. This paper consists of seven questions.
- 2. Answer only five questions.
- 3. All questions carry equal marks.
- 4. All answers to each question should begin on a fresh page.
- 5. **Do not** write on the question paper.
- 6. All answers and rough work should be done in the official answer booklet provided.
- 7. A non-programmable electronic calculator may be used in this examination.
- 8. Read other instructions on the answer booklet.

Question One

(a) Multiply 35_{six} by 23_{six} . (03 marks)

(b) Convert the following;

(i) 0.625_{ten} to base two. (04 marks)

(ii) 101.0101_{two} to decimal numbers. (03 marks)

(c) Given the function;

$$f(x) = \begin{cases} 3x - 1 & \text{if } x > 3\\ x^2 - 2 & \text{if } -2 \le x \le 3\\ 2x + 3 & \text{if } x < -2 \end{cases}$$

Find;

(i) f(2). (02 marks)

(ii) f(-3). (02 marks)

(d) A function is defined by $f(x) = x^2 + 5$, find $f^{-1}(x)$. Hence find $f^{-1}(9)$. (06 marks)

Question Two

(a) A rectangular cardboard measures 21cm by 16cm. When strips of equal width are cut off along the sides, the area of the remaining piece is $234cm^2$. Find the width of the strips. (11 marks)

(b) Solve the following inequalities and represent your answers on a number line.

(i) 2 - 4x < 11. (06 marks)

(ii) t - 7 > 3. (03 marks)

Question Three

(a) Without calculators or tables, express the following as a single logarithm;

(i) $\frac{3}{2}\log_a x + \log_a(x+1) - \log_a \sqrt{x}$. (02 marks)

(ii) $7 \log_a 2 - 3 \log_a 12 + 5 \log_a 3$. (04 marks)

(b) Solve the following equations;

(i) $\log_a x + \log_a x^2 + \log_a x^3 + \log_a x^4 = 5.$ (06 marks)

(ii) $2^{2x+1} - 2^{x+1} + 1 = 2^x$. (08 marks)

Question Four

(a) (i) On the same axes, sketch the graphs of 2x - y = 4 and 3x + y = 1; find the point of intersection of the two graphs. (08 marks)

(ii) Using the axes in 4(a)(i), plot a graph of y = 4 and state its point(s) of intersection with the two graphs in 4(a)(i). (03 marks)

(b) (i) Find the equation of a line passing through points A(3,2) and B(5,-1).

(04 marks)

(ii) Plot the above line and state the x and y intercepts.

(05 marks)

Question Five

- (a) When a rod of length l_0 is heated by a temperature t, its new length l is given by $l = x(1+\alpha t)$ where α is the coefficient of linear expansion.
 - (i) Make \propto the subject of the formula.

(05 marks)

(ii) Calculate \propto when l = 80, x = 80, and t = 30.

(03 marks)

(b) The length of a rectangular projector screen is 4m shorter than 3 times its width, the width of a rectangular projected image on the screen is 2m shorter than the screen's width. The image is 2m longer than twice its own width. Find the area of the screen if $44m^2$ of the screen are not covered by the image. (12 marks)

Question Six

- (a) Given the functions f(x) = 2x 1, $g(x) = \frac{1}{x}$ and h(x) = 1 x, find;
 - (i) The value of x for which g(x) is undefined.

(04 marks)

(ii) fg(2).

(03 marks)

(iii) gh(-1).

(03 marks)

- (b) The function is defined by $f(x) = x^2 7x + 9$ and g(x) = 7 4x, find;
 - (i) f(2).
 - (ii) the value of x for which f(x) = g(x).

(07 marks)

(iii) g(-4).

(03 marks)

Question Seven

(a) Complete **Table 1** for values of $y = \log_2 x$. Give values of y correct to 2 decimal places. (04 marks)

Table 1

x	0.2	0.4	0.6	0.8	1	2	3	4
у				-				

(b) Plot graphs of $y = 2^x$ and $y = \log_2 x$ on the same axes using a scale of 2cm to 1 unit on both axes. (09 marks)

- (c) Express $y = 2^x$ in \log form, hence find $\log y$ when $x = \frac{1}{2}$. (04 marks)
- (d) Two quantities are connected by the equation; y = mx + c. Given that y = 4 when x = 3 and y = 2, when x = -2. Find m and c. (03 marks)

END